

About Teksmobile

Teksmobile is one of the fastest growing mobile
app development companies in the world. We
specialize in the development of custom
applications for the Apple (iOS, watchOS, tvOS,
macOS) and Android (smartphone, tablet,
wearables) platforms. Team Teks was formed in
early-2006, and to date, we have successfully
created more than 1000 mobile apps.

1

Know Your APIs: A Guidebook For Beginners

Edited by:​ Hussain Fakhruddin (CEO, Teksmobile)

Copyright © 2017, Teksmobile. All Rights Reserved.
Available for free download on ​http://teks.co.in​,
http://teksmobile.com​, ​http://teksmobile.com.au​ and
http://teksmobile.se​.

This ebook is a proprietary material of Teksmobile. The
book as a whole, or any part thereof, cannot be
reproduced in any way (scanned, photocopied, typed,
etc.), using any electrical or mechanical method. Such
act is permitted only after obtaining prior permission of
Teksmobile. Infringement of the copyright would amount
to a chargeable offence.

Images & Icons:​ Readers are also requested to note
that all images used in this ebook are the sole property
of Teksmobile. None of the visual elements present here
can be reproduced, resold, or reused for any commercial
purpose. In case of any dispute, the standing of
Teksmobile will be deemed final.

The icons present in this book have been sourced from
their corresponding software/tools, with due
accreditation.

‘​Know Your APIs: A Guidebook For Beginners​’
is an exhaustive technical ebook brought to you by
Teksmobile, purely for learning and instructional
purpose. Please use it as such!

2

http://teksmobile.se/
http://teksmobile.com/
http://teks.co.in/
http://teksmobile.com.au/

Contents

Section ​Page

Preface 4

Chapters

The Basics 5

API Designing & Management 9

API Tools: An Overview 28

APIs In Various Industries 69

API Stories 75

3

Preface

The API economy is big, and it is growing bigger all
the time. Right now, APIs are the heart and soul for
the next-gen digital economy, facilitating seamless,
powerful backend cloud connectivity to web and
mobile applications, driving elements in the IoT
domain, and in general, enabling developers to do
more with existing resources. It’s not for nothing
that APIs have been dubbed as the ‘fossil fuel for
the next generation’ and 2017 been named as the
‘Year Of The API Economy’.

In the ebook you are just about to start reading, we
have outlined all the important points related to
APIs. This book is meant for newbies in this field -
and for their convenience - we have started out with
the very basics, and have then moved on to API
design principles, lifecycle analysis, API tools and
best practices, and the usage of APIs in different
industries. The book rounds off with 6 fascinating
API case studies.

We trust that you will find the topics covered in this
book to be extensive and beneficial.

Happy Reading!

-​- Team Teksmobile

4

1. The Basics

In this chapter, you will learn:

● The meaning and significance of APIs.
● The reasons for implementing APIs.
● A brief idea about how APIs are deployed.

1.1. What Are APIs?

A​PIs, or Application Program Interfaces, are tools

that make big data easier to work with. In essence,
APIs serve as viable platforms for multiple pieces of
compatible software to ‘interact’ with each other.
The next time you find Facebook displaying your
Instagram images, or Uber quickly tracking your
location on Maps - you should know that APIs are
pulling the strings.

In the context of mobile application development,
APIs are the tools/protocols/standards that help
apps connect with the cloud in the backend
(backend-as-a-service, or BaaS). They offer

5

seamless programmatic access to proprietary
applications for developers, doing away with the
need for sharing codes repeatedly. With APIs,
developers can build new capabilities, integrate
customized third-party services, create new models
or make modifications in existing ones, and add
greater value to their products.

Considering the many advantages that APIs bring
to the table, the recent surge in their popularity has
not been surprising. In February 2017, the total
number APIs on ProgrammableWeb was 17007 - 1

more than double the figure recorded in November
2012. In fact, this year has been touted as the ‘Year
Of The API Economy’ by experts across the globe.

 ​1.2.​ ​Why Are APIs Used?

A​s business platforms get increasingly advanced

and digitized, the importance of smooth-functioning
APIs continues to soar. These custom interfaces
allow entrepreneurs to leverage their businesses in
the most optimal manner, by implementing agile
standards, expansion of corporate branding, and
shortening of the time-to-market spans.

1 ​ → ​as on 17/3/2017

6

The best thing about APIs is that, business owners
do not need to have prior programming knowledge
to use them. There are plenty of reliable API
providers with whom they can partner, to open up
new market channels, connect with new partners,
and drive their businesses forward. With APIs,
innovation also becomes easier, and significantly
quicker.

 ​ ​1.3. How APIs Are Used

D​evelopers use APIs extensively to enhance the

functionalities of their mobile applications.
However, the adoption of these platforms is far
from being limited to this. General users (i.e.,
non-programmers) regularly come across common
interfaces like the Facebook API, the Twitter API or
the Google Maps API. In addition to the mobile
platform, APIs are also used on the Web and even
in apps for wearables.

Since the first instance of the use of APIs (by
Salesforce in February 2000), the interfaces have
come a long way. At present, APIs find widespread
usage in practically every industry - right from
sports and music, to social networking, payments &
finance, and travel. Just as websites were at the
turn of the decade, APIs are also moving on from

7

being a ‘nice option’ to ‘must-have tools’ for
business owners.

We will close out this section with a very basic idea
of the components in an ‘integrated’ API
framework/system. On the one side, there are the
systems on which the APIs exist - the ones which
‘provide’ these interfaces. These are called the
‘servers’. Receiving the APIs are the ‘client
systems’ - programs that can customize APIs to
make them best suited for the requirements on
hand. Finally, there are the ‘users’ - the final
customers who specify how a ‘client system’ is
going to interact with an API.

8

2. API Designing &

Management

In this chapter, you will learn:

● Key factors related to API designing
● API request methods and HTTP status

codes
● API design best practices
● API data formats (JSON/XML)
● The API lifecycle

A​PIs are already big, and growing bigger. By the

end of 2017, custom APIs will boost the total
economic value of mobile applications beyond the
$230 billion mark. In the domain of product
marketing too, APIs have started to leave a mark
(the case study of Expedia is a classic example). It
has become of utmost importance for API providers
to be aware of the best practices of designing
high-powered, user-friendly interfaces. We turn our
attentions to such design-related factors in this
chapter.

9

2.1. Protocols

I​n the context of API architecture, ‘protocols’ refer

to the standards or ‘etiquettes’ which govern how
processes are monitored and handled by the
software. Just as HTTP is the main protocol for the
World Wide Web, REST, SOAP and XML-RPC are
popular protocols on the basis of which APIs are
designed. Let’s examine them in more detail.

2.1.1. REST

REST, or REpresentational State Transfer, makes
use of standard HTTP architecture and advanced
XML documents for the implementation of secure,
high-quality web services. There are 4 ‘methods’ (to
be discussed later) in these APIs, through which
REST interacts with the server and prompts the
desired response. The ‘Uniform Resource

10

Identifiers’ (URIs) have to be carefully defined, for
the creation of this type of APIs. Typically, REST is
faster and more ‘lightweight’ than SOAP - since it
uses up less resources.

 ​2.1.2.​ ​SOAP

SOAP, or Simple Object Access Protocol, is
another widely-used design standard for APIs. It is
exclusively based on XML, and facilitate
communication between distributed/shared apps -
often located on non-similar platforms (ie., the
protocol is platform-independent). SOAP puts
relatively higher load on networks (the requirement
to put tags is an important factor) in comparison to
REST. In most cases, external libraries are
required to parse SOAP responses. The intensive
serialization required in the SOAP architecture
places contributes in making it ‘heavier’. In contrast,
REST is ‘stateless’.

11

 ​2.1.3.​ ​XML-RPC

RPC, or Remote Procedure Calling protocol,
transforms discrete XML-RPC messages into
easy-to-understand HTTP-POST requests. The API
responses are recorded in the server, and the
responses are provided in the XML format.

REST APIs, with more than 70% of developer
mindshare, is, by far the most popular API
designing protocol. SOAP, with a 20%-odd share,
is a distant second, while XML-RPC has a sub-10%
share.

Note: Since RESTful techniques making up for the
majority of public APIs, we will primarily be
concerned with it in our discussions.

12

2.2. Request Methods

T​o ensure correct API performance, the ‘server’

needs to ‘understand’ the type of action(s) that the
‘client’ wants it to take. This information is passed
on in REST APIs with the help of 4 separate
request methods.

2.2.1. POST

The POST request method ‘creates’ new
subordinate resources, under existing parent
resources. It is typically used for non-idempotent
requests.

13

2.2.2. GET

The GET verb has to be used to retrieve existing
resources. Developers, particularly the new ones,
often make the mistake of using GET to make
modifications to resources. That cannot be done
with this request.

 ​2.2.3.​ ​PUT

This is the request method used in RESTful
architecture to update or edit an existing resource.
In addition, PUT can be used to create new
resources - only in cases where the client selects
the ‘Resource ID’ (instead of the server).

 ​2.2.4.​ ​DELETE

DELETE is an idempotent request method, used to
remove an existing resource. A resource has to be
identified by the Uniform Resource Identifier (URI),
prior to the deletion. Typically, if a resource has
already been deleted, calling DELETE on it again
returns a ‘NOT FOUND’ response.

Apart from these 4, ​PATCH is yet another
often-used RESTful request method. It is used to
modify resources, and generally specifies the
process in which these modifications are done as
well.

14

2.3. HTTP Status Codes

O​n receiving a request from the ‘client’, the

‘server’ makes an attempt to process it. Based on
how that goes, a HTTP status code response is
generated - in the form of a three-digit number. We
will take a tour through the most common HTTP
status codes over here.

 ​#200​ - OK
 ​#201​ - Created
 ​#204​ - Zero Content
 ​#301​ - Moved Permanently
 ​#304​ - Not Modified
 ​#401​ - Unauthorized
 ​#404​ - Not Found
 ​#422​ - Unprocessable Entity
 ​#500​ - Internal Server Error

15

Classifying broadly, all 1xx HTTP status codes are
informational in nature, the 2xx ones indicate
different forms of success, 3xx codes are all about
redirection, client-errors are indicated by 4xx
responses, while 5xx responses present
server-side errors.

 ​2.4. API Designing: Best Practices

J​ust as software applications need to deliver

top-class user-end experience (UX), APIs too have
to be smartly designed to ensure satisfaction of the
customers. More importantly, unless an API is
designed in accordance with the best practices, it
might not deliver all the desired results, and using it
can prove to be a hassle for developers. We will
focus briefly on how RESTful APIs should be
designed next.

16

2.4.1. Versioning Is Important

Over time, APIs have to be updated. The last thing
an API provider wants is a new version affecting
the final performance of the interface, altering the
customer-experience. By adding versions in the
URL of an API, two purposes are served: firstly,
new versions, with additional features and
functionalities, can be released without modifying
the interface per se, and secondly, the
user-distribution of an API can be systematically
tracked.

 ​2.4.2.​ ​Data Caching Should Be Included

While in-memory caching for every host makes an
API heavier and often buggy, developers typically
include cloud-based hosted caching solutions - to
bolster both the speed and efficiency of interfaces.
A properly set up distributed caching service allows
hosts to alter/modify APIs without having any
operational effect on the latter.

 ​2.4.3.​ ​Hypermedia For Scalability

Over time, business APIs are expected to do more.
The digitization scenario is evolving rapidly, and
API providers have to make their tools seamlessly
scalable, to be able to meet up the increased
requirements. Hypermedia, which refers to
hypertext extensions for multimedia functionality,

17

help in ensuring that client-side apps do not get
damaged in any way, as the APIs are changed and
scaled up. The role of hypermedia as the ideal tool
for continuous API evolvability was touched upon at
the 2016 Nordic API World Tour.

 ​2.4.4.​ ​Pagination Matters

Pagination, when done consistently, improves the
efficacy of API tools in two important ways. First,
they reduce the total load of computation on the
app servers. From the perspective of clients,
non-important data is stopped from being
transferred. This, in turn, enhances the overall
usability of APIs significantly. In addition,
annotations and markers are vital for high-level
authentication and access control.

2.4.5. A Simple API Is A Good API

The more complex an API is, the greater are the
chances for it to go wrong somewhere. Including
too much of rich data can make the development
cycle of APIs longer, while having multiple
structural variations is not a good idea either. The
core features of an interface have to be identified
and closely monitored - right from the data
sequencing and workflows, to the built-in software
options and functioning data structure. Unless
software developers find an API to be

18

easy-to-understand and easy-to-use, it won’t be of
any value.

The security parameters of APIs also have to be
carefully set up (many APIs are simultaneously
available on HTTP and HTTPs). To avoid overloads
and API concurrency issues, certain rate limits
should be pre-specified. As already highlighted
earlier, the HTTP response codes of REST APIs
have to be correct as well.

Like any software application, APIs also have to be
carefully tested before release. There are several
popular tools for API testing, and we will highlight a
few of them in a later section of this ebook.

2.5. Data Formats

R​ecall the definition of APIs we started with: they

help software tools/applications to ‘interact’ with
each other. For this, the ‘language’ of APIs needs
to be in a data format that is
machine-understandable, and easily usable by
humans (in this case, coders). Here’s a brief look at
the two most popular data formats for APIs:

19

2.5.1. XML

The older of the two data formats (used since
1996), and also the ‘heavier’. XML comes with
relatively simple API data structure support, with
the help of user-friendly building blocks. Primary
blocks in the XML architecture are called ‘nodes’ -
and the format typically starts with a root/parent
node and then moves on to the ‘child nodes’ within.
The value contained within the opening and closing
tags of nodes specifies the details about a
component. In comparison with JSON (which we
will discuss next), XML is a considerably more
‘verbose’ data format.

2.5.2. JSON

With much lesser markups and necessitating low
volumes of data transfer, JSON is the ‘faster’
alternative to XML as a workable data format for
APIs. One of the reasons behind its popularity is
the fact that JSON is wholly based on Javascript -
and can be used for web applications in both the
backend and the frontend. The format uses ‘keys’
(that specify attributes) and ‘values’ (that contain
the details) for communicating with supported
systems. JSON also uses building blocks, but the
format is relatively simpler and ‘lightweight’ than
XML (no opening/closing tags required either).

20

The data formats used in APIs have to be
mentioned under ‘Content-type’.

2.6. API Lifecycle Management

A​ll types of software-as-a-service (SaaS) have

their own distinct lifecycles. APIs are no exception
to this rule either. In a sentence, the API lifecycle
refers to the entire span of time from the
conceptualization of the tool, right up to its maturity,
deprecation and final retirement. There are no
static rules about the exact duration of the API
lifecycle (or indeed, of the different stages) - which
varies with the precise nature and purposes of each
interface. In this section, we will present the 4
broad stages that the lifecycle of APIs are divided
under.

21

2.6.1. Stage 1 - API Requirement
Definition

During the first, or the planning stage, all the
important details about an API are sorted out.
These details must necessarily include the
justification of creating the tool (an API must not be
created just for the heck of it), its primary
objectives, and the outlines of the business
policy/development policy within which it will be
implemented.

The basic API blueprint is laid out during this stage.
The blueprint needs to shed light on each of the
following points:

❖ API growth model
❖ API usage projections/predictions
❖ API mission statement
❖ Expected returns
❖ API marketing/promotional methods
❖ Data format (JSON or XML) and protocol

(REST or SOAP)
❖ Implementation of API-first approach.

As is evident, the background research about
designing an API has to be done in the planning
stage. Of course, providers also have to take the
call of whether they would create a public API, a
private API, or a partner API.

22

2.6.2.​ ​Stage 2 - API Development &
Integration

Following the planning phase, the attention next
shifts to API development - and the coding required
for the purpose. There are several user-friendly
development tools for interfaces out in the wild (we
will name a few in the next section) - that go a long
way in aiding app developers, and shortening the
duration of this phase, as a result. API providers
typically chalk out the versioning plans, the
scalability options and the size of their interfaces by
this stage. The following factors have to be placed
importance on during the development stage:

❖ API designing, for user-understandability
and machine-understanding

❖ API construction, involving the main coding
❖ API authentication, validation and security
❖ API testing

By the end of the development phase, the API has
a properly functioning two-way connection with the
software application it has been integrated into.
Advanced, multi-featured API development
frameworks are available, which should be used at
this stage. If required, developers can go back to
Stage 1 too (the API lifecycle stages are iterative).

23

 ​2.6.3.​ ​Stage 3 - API Operations &
Management

A custom API management layer is created and
initiated during the third stage of the API lifecycle.
The focus of this layer is on the upgradation of ‘API
intelligence’, and the resultant thrust in its
efficiency/performance levels. The management
layer performs this function by closely monitoring
API analytics and stats, making user-behaviour
more predictable, securing the ‘endpoints’ of the
interface, and setting up a robust API monetization
scheme.

This stage also requires coders to maintain and
add to the API documentation (started from the
development stage). The documentation eases the
hassles of making changes and adding new
features in a big way. The release notes and/or the
changelog should include all the changes made in
the API structure - right from the time it was
conceptualized.

A well-designed API management layer has certain
must-have features. These include:

❖ Access controls and security parameters
❖ Developer portal access
❖ API contract(s)
❖ Usage and analytics information

24

❖ Sandboxing (for test integration)
❖ Billing information

After the establishment of the API management
layer, developers have to work with 2 separate
URLs. The first one resides between the
management tab and the client application/website.
The second URL is the one between the API and
the management tab.

Note: In order to make changes in the technical
features or development aspects of the API, coders
often have to move back to the previous stage, and
return.

2.6.4. Stage 4 - API Engagement,
Adoption, Maturity & Retirement

Once the API has been carefully tested and found
to be free, it is ready to release - and the focus
shifts on maximizing its ‘discoverability’ among web
software/mobile app developers. To ensure
glitch-free developer-experience (DX) and a high
API value proposition, custom use-cases -
highlighting the different important features of the
interface - are also created. The main target is to
drive up the overall engagement level of the API.

In the context of API engagement monitoring and
expansion, API providers often find it useful to

25

create well-rounded ‘Developer Programs’. These
programs are, in essence, comprehensive plans to
increase the adoption rates of the software tool
under question. The main considerations of an API
Developer Program include:

❖ The developer portal (serving as the point of
entrance).

❖ API evangelists (for promotions, both online
and offline).

❖ Community development (for publicizing the
API on social media).

❖ Pilot partner interaction (for
feedback/opinions on API)

❖ Outreach acceleration (collaborating with
partners to expand the reach of API-related
objects).

❖ API monitoring (to track effectiveness of API
at every stage).

As an API moves beyond its maturity stage, the
returns from it starts to diminish. It has to be
‘retired’ (i.e., discontinued) when it becomes
evident that it has entirely exhausted its value
proposition.

The main reasons for retiring an API are:

❖ Lack of sync with business objectives.
❖ Slowdown (or complete stop) of innovation

by app developers (API users).

26

❖ Mismatch of revenue objectives.
❖ Decline in user-base, indicated by metrics.
❖ New, unsolved, security threats.

Note: Along its entire lifespan, an API has to be
managed with smartly coordinated API governance
regulations. In the next chapter, we will take a look
at API strategy optimization - which is extremely
important for getting the full value out of APIs.

 --

27

3. API Tools: An

Overview

In this chapter, you will learn:

● A summary of the benefits of APIs
● API development tools, with particular

emphasis on Swagger
● API discovery tools
● API testing types and tools
● The APIGEE platform
● API authorization tools
● API best practices (Designing, Security,

Enterprise API handling, API strategy
optimization)

B​efore taking you through lists of high-end API

tools and software, let us quickly summarize the
benefits of moving on to an optimized API platform.
Working with APIs offers advantages at every
stage, right through its lifecycle.

28

3.1. How Do APIs Help?

❖ App developers get to avail smooth
self-service onboarding options.

❖ Agile development methods can be
adopted, bringing down the overall
development cycle.

❖ From the backend, applications can be run
to scale.

❖ Cloud access becomes more reliable with
software-as-a-service (SaaS).

❖ Avoiding software security threats becomes
easier.

❖ Final users receive seamless connected
experiences.

❖ Business reach grows with new partners
and developers.

❖ Custom microservices for agile operations.

29

3.2.​ ​API Development: Tools

C​oders can use different programming languages

to create application program interfaces.
Depending on their language preferences, there
are several high-performance and user-friendly API
development frameworks available:

❖ For Python → Django, Flask Web
❖ For Node.js → Express, Restify, Loopback
❖ For Ruby → Grape, Rails, Sinatra
❖ For PHP → Slim
❖ For Java → Spring, JAX-RS, Rest.li
❖ ASP.net
❖ AWS API Gateway

30

For API prototyping, tools like API Blueprint,
AppNow, Apiary and Justinmind are popular among
developers worldwide.

 ​3.3.​ ​The Swagger Factor

S​wagger, a widely used API description and

documentation tool, was released in August 2011.
Over the years, it has grown to become one of the
most trusted API frameworks, with developers from
around the world using it to create fully-customized,
powerful interfaces. Swagger 2.0 has several useful
open-source tools (available on Github) to aid in the
designing, build stages and documentation of APIs.

3.3.1. Swagger Tools

3.3.1.1. Swagger Editor

The Swagger Editor allows coders to modify
existing APIs as well as create new ones from
scratch. The underlying Swagger definition is
visually rendered on the editor. In addition,
real-time feedback is also generated by the
Swagger Editor. It uses YAML to author Swagger
definitions.

31

3.3.1.2. Swagger UI

The Swagger UI simplifies the entire task of visual
interaction with the platform by API developers. All
components of the API documentation (as present
in the Swagger specification) are present in
Swagger UI. It is based on HTML5.

3.3.1.3. Swagger Codegen

The Swagger Codegen tool allows coders to
generate client SDKs as well as smart stubs, right
from the Swagger specification. The tools facilitates
creation and usage of Swagger APIs in a wide
range of popular programming languages.

3.3.1.4. Swagger Node

The Swagger Node tool is for Node.js users. It lets
fully fledged design-driven server implementation of
Swagger APIs.

3.3.1.5. Swagger Core

The Swagger Core libraries are extremely useful
support resources for API
development/documentation. These libraries are
Java-supported - and help in the creation,
consumption and general interoperability with
Swagger definitions.

32

3.3.1.6. Swagger Parser

Swagger Parser lets coders parse built-in Swagger
definitions from Java. It is a powerful standalone
library used widely for definition parsing.

3.3.1.7. Swagger JS

This one is also a well-rounded Javascript library

within the Swagger framework. From Node.js apps
as well as from browsers, Swagger JS establishes
connections with Swagger-defined APIs.

3.3.2. More From Swagger

Many API-related tools have successfully
incorporated the Swagger framework to deliver
services to API-makers. We have highlighted some
of these Swagger-powered tools here:

 ​Axway​ → offers interactive documentation for
quick browsing and accurately testing available
APIs.

 ​Swagger Hub​ → free software-as-a-service tool
for seamless coordination and collaboration right
through the API lifecycle.

33

 ​Restlet Studio​ → for visual presentation for
web APIs and automatic generation of Swagger
definitions.

 ​Runscope​ → imports Swagger definitions and
generates custom tests based on the defined
methods.

 ​APISpark​ → for smooth hosting, management,
documentation and even testing of APIs.

 ​Dreamfactory​ → used for both SQL and
NoSQL for automatic generation of RESTful APIs.

 ​RepreZen API Studio​ → an integrated
environment for Swagger APIs. Helps in API
designing, visualization, documentation, code
generation and testing.

 ​Gelato​ → a multi-featured API developer portal
that is used to generate API reference
documentation.

With built-in support for more than 25 languages, a
base of over 2500 contributors and over 10 million
downloads, Swagger easily counts among the most
opted-for API frameworks available at present.

34

3.4. API Discovery: Tools

F​or web/mobile app developers, finding the ‘right

APIs’ for their applications is not the easiest task in
the world. The total count of APIs freely available
on online repositories is increasing rapidly, and
many new interfaces are released and added every
week. In such a scenario, developers have to rely
on the leading API discovery tools to locate the
software that they need. In this section, we will list
out some of these tools.

3.4.1. ProgrammableWeb

The ProgrammableWeb API directory has been in
existence since 2005 - making it easily the oldest
(and probably the most exhaustive) API discovery
tool. Apart from open APIs and mashups, various
types of relevant API-related stats can be obtained
from here. ProgrammableWeb was acquired by
Mulesoft in 2013.

3.4.2. Apigee

Apigee offers ‘API controls’ which enhance the
discoverability of APIs. Interfaces developed by
leading API providers (including Twitter and

35

Facebook) are available in the consoles.
App-makers/API customers can easily learn API
functionalities, before starting with the
implementation. Methods and documentation types
can also be chosen in the API consoles.

3.4.3. Mashape

This API discovery tool offers two-fold
functionalities: as an advanced API management
platform and as a generic API marketplace. Each
API listed on Mashape is accompanied by a test
functionality and detailed documentation, making
things easier for clients. Both free and paid APIs
are available on Mashape, and the community has
well over 5000 Public APIs.

3.4.4. Mashery

The Mashery API Network is another excellent
source for API discovery (Mashery was founded
way back in 2006). In general, Mashery offers
high-quality API management, technology and
infrastructure support - with more than 150000
developers in the network. APIs are audited
regularly (explaining the presence of the DX
Certified badge on some APIs). The discovery tool
includes Hacker League, Open Source Tools, and
the in-house API Explorer section.

36

3.4.5. APIs.io

Unlike most other API discovery tools, APIs.io
operates more like a smart search engine software
for digital platforms. It has a fairly large number of
web APIs - with the APIs.json format - in the
repository. One of the biggest advantages of this
tool is that, it does away with the need of manually
adding APIs by contributors.

3.4.6. Google APIs Explorer

This one, as the name itself suggests, is a directory
exclusively for Google APIs. Through this
interactive and user-friendly too, users can browse
through methods, place API requests and check
out the responses. Documentations as well as
supported methods and parameters corresponding
to an API are displayed - when that API is selected.
The Analytics API and the Gmail API are two
examples of the APIs present in this tool.

37

3.5. Tools For API Testing

F​irst, let us briefly explain the various types of API

testing. As is the case for any other form of
software, quality and performance are the principal
points of concern among API clients. To ensure
that an API delivers the service expected from it
without any hitch, developers have to perform
different API tests. We will briefly deal with them
here.

3.5.1. Types Of API Testing

❖ Usability Testing - done to check the

overall user-friendliness (read:
developer-friendliness) of APIs.

❖ Load Testing - done to check the volume of
callbacks/requests that APIs can handle at
a time.

❖ Functionality Testing - done to check
whether APIs are indeed functioning as
expected/desired.

❖ Proficiency Testing - done to find out if
APIs are helping app developers, and to
what extent.

❖ Security Testing - done to ensure that the
user authentication, access control,

38

permissions and other security parameters
are working properly.

❖ Reliability Testing - done to check the
consistency of API responses/outputs
across different software/client projects.

❖ Discovery Testing - done to check whether
APIs have adequate formal documentation
for the users.

Let’s move over to the API testing tools now. Most
of the tools we will highlight are used to perform
load/functionality/usability testing.

3.5.2.​ ​API Tools: Testing

3.5.2.1. HttpMaster

Primarily used to test web API calls (​i.e., load
testing​), the HttpMaster tool automates the overall

39

process of web application testing. ​POST, GET and
DELETE are some of the common ​http methods
supported in this tool, along with a fairly large array
of validation methods and expressions. API
requests can be clubbed into batches with the
dynamic parameters of the web development tool,
making the testing process easier for developers. In
addition to API testing, HttpMaster can be used for
website testing and service testing as well.

3.5.2.2. SoapUI

One of the most ‘​complete​’ API testing tools out
there at present. From ​load and regression testing​,
to ​compliance and, obviously, ​functional testing can
be done with this software resource. The built-in
Groovy support enables API testers to generate
complicated validation scripts with ease, while web
method requests can be used to directly generate
test cases. SoapUI offers cross-platform
functionality and serves as a tool for ​testing both
REST APIs and SOAP APIs​. Assertions (​created
with XQuery or XPath​) are used to generate the
web method results. The test setup in SoapUI can
also be altered, as and when required.

40

3.5.2.3. Postman

For manual API testing, Postman – which is
basically a Google ​Chrome plug-in – can be just the
perfect tool. Since Postman is, in essence, a
high-end ​HTTP client​, it supports practically all
forms of modern web API data (​for extraction or
exploration​). The interface of the tool allows testers
to write out custom ​Boolean test scripts​, while
batches of REST calls can be created and saved
(​for later execution​) too. A big advantage of
Postman is that it is not a command-line based tool
(​unlike, say, CURL​), which makes using it
considerably easier.

3.5.2.4. DHC

Created by Restlet, DHC is a widely used ​Web API
testing resource. The tool allows users to seamless
integrate the API testing procedure with their
Continuous Integration (CI) and/or Continuous
Delivery (CD) delivery methods. The built-in
graphical user-interface of DHC doubles up as an
excellent ​visual tool for monitoring API calls. A
large number of API requests can be bunched
together in test scenarios, with the tool having the
capability to handle requests of varying complexity.
The responses to requests can be analyzed easily
too.

41

3.5.2.5. Apache JMeter

A ​Java-based​, multi-utility, ​open-source tool for
load testing and functionality testing of the
endpoints of Web services APIs. JMeter is
increasingly being used to test ​RESTful APIs as
well. The ​multi-threaded feature of this tool makes it
ideal for performing effective, accurate load testing.
Multiple ​protocol types are supported by Apache
JMeter (​FTP, LDAP, SOAP/REST, HTTP/HTTPS,
and more​), during performance testing and load
testing of APIs.

3.5.2.6. vRest

For automated testing of ​RESTful APIs as well as
HTTP APIs​, vRest is a more than handy online tool.
Depending on the precise specifications of each
API, documentations are generated by the tool –
and it also delivers high-speed validation services
for REST APIs. The ​Mock Server Functionality of
vRest, which allows smooth creation of API mocks,
also deserves a special mention. Data can be
imported from the ​Swagger API framework without
any hassles. vRest also comes with ​JIRA-Jenkins
integration.

42

3.5.2.7. Parasoft

Parasoft is often the go-to testing tool for APIs
without graphical user interfaces (​GUIs​). A vast
range of protocols is supported by the Parasoft
interface, making the task of specifying automated
test scenarios a lot simpler. Scenarios of varying
complexities are automated by this tool – ​across
mainframes, databases and even messaging
layers​. The tests created with Parasoft are typically
reusable and scalable, apart from being easy to
maintain​. The tool is best for performing ​regression
testing of APIs with state-of-the-art validation
methods. A high point of Parasoft is that, it lets
users create tests without having to actually code.

3.5.2.8. TestingWhiz

Yet another code-free API testing tool (​it also
performs mobile testing, big data testing and
database testing​). Regression tests for APIs can be
easily automated with TestingWhiz, and the tool
also offers reliable ​automated web UI testing
services. Practically all the popular browsers are
supported (​the likes of Firefox, Chrome, IE, Opera,
Safari​) – enhancing the coverage of tests as well as
the convenience of users. More than ​290
commands are available for generating modular
automation scripts – doing away with the need for
coding.

43

HP QTP and TestMaker are a couple of others
powerful tools for API testing. Thorough, careful
testing is an absolute success for paving the way to
success for an API...or for any software, for that
matter.

3.6. Apigee: The Smart API
Management Platform

L​aunched in 2004, Apigee has gone on to

become a widely used company for managing
application program analyses. It offers two
products: the first is Apigee Edge, which serves as
a cloud-hosted or locally-hosted API management
platform. The other is Apigee BaaS - a platform for
backend-as-a-service solutions.

The Apigee platform is used by web/mobile app
developers around the world for designing, scaling,
analyzing and even securing digital interfaces.
Some key functionalities of Apigee have been
highlighted here:

❖ Creation of scalable, state-of-the-art
RESTful APIs from SOAP services.

❖ Deployment of API proxies from Swagger
specifications or Open API specifications.

❖ Centralized and secure management of
APIs.

44

❖ Caching, rate limiting and dynamic routing
for API traffic management.

❖ Application of SQL/XML threat protection
and similar policies.

❖ Inclusion and maintenance of SAML, OAuth
2, PCI/HIPAA and 2-way TLS data
compliance standards.

❖ Providing tier-based structure of APIs to
user.

❖ Driving up user-engagement levels.
❖ Making in-depth insights, stats and figures

on API developer analytics available.
❖ Monitoring errors, response times, traffic

volumes and other key metrics.
❖ Visual troubleshooting by recording

processing steps.
❖ Integration of API lifecycle management in

Systems Development Lifecycle (SDLC).
❖ Auto Scaling to handle callback spikes.
❖ Customized model building and

monetization solutions.
❖ API call analysis to block out ‘bad bots’.
❖ Support for REST APIs for Internet of

Things (IoT) services.

The Apigee Edge platform is used to create and
manage API proxies. The platform is mostly used
by software developers who need a secure,
easy-to-use and multi-featured backend resource.

45

3.7. More API Tools

In addition to the ones highlighted in the previous
sections of this ebook, there are several other
useful API tools available to developers. Let us
briefly learn about a few of them over here.

3.7.1. KONG

A powerful open-source API management tool with
extensive documentation and an active community
on Github. Rate limits, OAuth support and SSL
termination are some of the main features of KONG
- which has been built on openresty. REST APIs
are used to create modules in KONG.

3.7.2. Galileo

Formerly known as APIAnalytics, this tool displays
the usage stats of APIs to the coders. Right from
the nature and types of API errors, to the endpoints
that are being utilized (along with the associated
user-distribution) - all API-related metric can be
monitored with this tool. Galileo does away with the
need for manually parsing logs - and that’s a big
advantage for API providers.

46

3.7.3. APIBoard

Another well-rounded documentation tool that helps
programmers track all the recent
changes/modifications made in APIs. APIBoard
also creates series of API calls - also known as
‘workflows’ that operate sequentially to complete
tasks.

3.7.4. APIGarage

A multi-platform API console made on top of
Angular.js and Electron that ensures seamless
workflow integration for developers - providing a
boost to the productivity levels of the latter.

3.7.5. Blockspring

Blockspring focus on ramping up consumption and
usage figures of APIs, by making them accessible
through common desktop applications (for instance,
MS-Excel). The tool creates customized API blocks
which can be run through different business apps -
with customers not required to have prior
programming knowledge.

47

3.7.6. APIStudio

Swagger specifications can be used to generate
APIs, in this graphical-user-interface for API
development. Client libraries and server-side codes
can also be generated with APIStudio.

 3.8. API Authorization Tools: OAuth

2

D​ata security is of paramount importance on

digital platforms. APIs typically contain big data
from the cloud or from other third-party sources -
and there simply has to be a reliable, user-friendly,
authorization framework that offers selective
access through HTTP services, to permitted
user-accounts. The tool AUTHORIZES third-party
applications to access user accounts AFTER
delegation of user-authentication to the host
service. Github and Facebook are two examples of
the HTTP services supported by the OAuth
framework.

3.8.1. Moving on from OAuth 1

OAuth 2 has several interesting points of difference
from its predecessor - the ‘AuthSub’ and
‘FlickrAuth’ - based OAuth 1 framework. For

48

starters, the latter required ‘client ID’ and ‘client
secret’ for signing requests - while OAuth 2
removes the confusion by making the use of
HTTPS mandatory for all interactions between
APIs, clients and browsers. Scalability is also
something OAuth 2 performs much more efficiently
than OAuth1 (the temporary signing credentials and
the state management used to make things
difficult). The API server no longer has to access
the ID and the secret of the concerned
application(s). Also, OAuth 2 delivers a significantly
better experience on native mobile applications
(OAuth 2, in contrast, was optimized for web
browser apps).

3.8.2. OAuth User Roles

The OAuth 2 framework has four separate,
well-defined roles:

Authorization Server - The ‘user’ either accepts or
declines API requests on the authorization server.
In certain setups, the API server itself serves as the
authorization server (typically for small-scale
applications).
Client - Within the OAuth framework, the external
application that requests for user information/user
account access is referred to as the ‘client’.
Requires prior user permissions.
Resource Server - In setups where the API server
and the Authorization Server are not one and the

49

same, the former is known as the resource server.
It is used to obtain the requested user-information.
User/Resource Owner - As the role name itself
suggests, this is the person or entity from whom the
API requests information.

3.8.3. OAuth 2: Grant Types

A third-party app can use different methods to
request information. The manner in which this is
done determines the type of grant provided by
OAuth 2 to the final user. The framework offers as
many as 4 different types to users. Let’s quickly
check them out here.

Implicit grant - Typically given to apps running on
third-party applications (web/mobile).
Authorization Code grant - This grant type
typically goes with server-side apps.
Client Credentials grant - Provided with the API
access of the applications, and
Password - This OAuth grant type allows resource
owners to log in with their unique username and
password combinations.

UMA, Open ID Connect and Green Button are the
three main protocols supported by OAuth 2.

50

3.8.4. OAuth 2: Registering An Application

Users have to fill up the registration form (​available
from the website​). Apart from the name of the app
and its website (​along with, maybe, a short
description​), they also have to specify a ​Redirect
URL (where the app will redirect to, after the
access permission is granted). Post-registration, a
Client ID and a unique ​Client Secret are allotted to
every user.

3.8.5. OAuth 2: Access Tokens

Tokens, or ‘access tokens’, are used by the
client-side applications to access and utilize
information from user-accounts (​a form of
permissions​). The tokens are generated by the
server, following a validated request by the
concerned third-party app.

From Facebook and Twitter, to Yahoo, GitHub and
Google – most of the big players rely on Oauth2 to
provide information from user-accounts on their
servers. The framework is easy to use, the
registration procedure is straightforward, and it has
top-of-the-art security features.

51

3.9. API Practices

S​oftware development is tricky business.

Developers can place one foot wrong while coding,
and the resultant bugs and issues might become
too large to resolve. Not adhering to the specified
quality parameters is likely to prevent APIs from
functioning as desired (i.e., the functionality testing
will fail). In this section, we will look around at a few
important API practices.

3.9.1.​ ​API Best Practices: Designing

(Note: We will focus primarily on RESTful APIs
here, as we have done throughout this book)

52

3.9.1.1. Using Nouns Instead Of Verbs in
URL

Unlike SOAP APIs, ​RESTful APIs make data
available as ‘resources’. In such a
resource-oriented ecosystem, all elements of the
API domain (​right from Sales and Clients, to
Orders, Documents and Users​) should be
considered as separate ‘​entities​’. This, in turn,
means that nouns – and not verbs – have to be
used in the URL (​e.g., POST abc.com/trainings
instead of POST abc.com/gettrainings​). Verbs can
be delegated systematically with the HTTP verbs.
Each resource needs to be exposed by an API,
doing away with the difficulties of actually making
endpoints of each specific ‘​action​’. The HTTP verbs
will indicate the action to be performed, while the
resources as nouns in the URL will highlight the
purpose/functionality.

3.9.1.2. Communication Format in HTTP
Folder

The format of communication should be clearly
mentioned in the HTTP header of a REST API. The
serialization formats help both the API clients as
well as the API developers to understand how
communications/network requests would take place
through the interface. For listing out all the
supported response formats, use ​‘Accept’.

53

‘Content-type’​, on the other hand, specifies the
exact format of the request.

3.9.1.3. Application of HATEOAS Principle

A factor that can trip up an otherwise good REST
API is an over-complicated navigation scheme.
HATEOAS, or ​Hypermedia As The Engine Of
Application State​, is a principle that addresses this
issue well – and hence, should be utilized during
the API designing phase. In essence, the
HATEOAS approach is all about placing properly
working (pre-tested) ​hypertext links to facilitate
smooth navigation​ within the interface.

3.9.1.4. Two URLs For Each Resource

API designers should create 2 separate base URLs
corresponding to each resource. ​One of them will
be handling specific (single) values, while the other
will be for managing multiple values. This approach
helps users keep track of their network requests on
a real-time basis. Relying on a single URL for both
specific and multiple values increases the chance
of errors being returned.

54

3.9.1.5. Using subresources in REST APIs

You need to keep your APIs simple, and
introducing ​subresources is a great way of doing
that. This is particularly important for interfaces that
involve a large number of relationships – where
using only the top-level APIs can be complicated. In
general, ​any resource that is a part of another
(parent) resource can be used as a subresource.
These subresources offer two-fold benefits: firstly,
within the representation of the resource, the
dependency on individual keys is brought down​.
Also, API customers can ​understand the resources
more easily​, when subresources are present. To
put it simply, subresources significantly enhance
the readability of RESTful APIs.

3.9.1.6. ​Plurals in Endpoint Names

While using plurals for every single resource does
not seem correct from a strict grammatical point of
view – there are other key advantages of using
them over the singular forms (​and API developers
need not be overtly bothered about grammar in
their codes any way​). The use of plurals (e.g.,
api/users instead of api/user) gives a clear
indication of the ​entire collection of data that needs
to be fetched (​in our case, ‘user’​). Barring a few
exceptions, plurals should be used for most
resources.

55

3.9.2. API Best Practices: Security

3.9.2.1. SSL Certificate Validation

For ensuring the security of web APIs and clients,
validation of concerned ​SSL certificates is
essential. However, developers often make the folly
of making this validation process rather half-baked
– as a result of which hackers can issue their very
own bogus certificates (​all that’s required is a
working net connection​), get random users to
validate on these, and access confidential user
information (​breaking into the the encrypted data
transfer process​). ​Malicious API traffic interception
and the ‘weak validation’ on fake certificates can
deliver API keys, passwords and usernames right
in the hands of hackers as well. Set up the data
encryption and validation methods based on the

56

sites that the web client will access. For iOS
applications, consider ​‘key pinning’ to keep things
more secure.

3.9.2.2. JSON/REST instead of SOAP/XML

Most vulnerabilities from the server-side can be
easily tracked and fixed in SOAP (​Simple Object
Access Protocol​) APIs. However, the XML data
format – which is bundled in with the SOAP
protocol – has several ​‘soft targets’ for hackers​, like
Denial of Service (DoS), attacks by external
entities​, and even problems in ​XML encryption​. The
fact that the SOAP protocol remains in production
for extended periods due to heavy system
dependencies complicates matters further. Unless
you are working on a corporate API or a software
legacy system, it makes a lot of sense to ditch
SOAP/XML ​in favour of the much simpler
JSON/REST (Representational State Transfer)
combination. The potential security threats will be
much lower.

57

3.9.2.3. Transport Layer Security

Absence of a ​Transport Layer Security (TLS) in an
API is practically equivalent to handing out open
invitations to hackers. Transport layer encryption is
one of the most elementary ‘​must-have-s​’ in a
secure API. Unless a TLS is used, risks of the fairly
common ​‘Man-In-The-Middle’ attacks​(where an
unauthorized third-party can intercept the
transferred data and modify it) remain very high.
Use both SSL and TLS in your APIs…they are
neither too pricey or too complicated, and they go a
long way in removing basic API vulnerabilities.

58

3.9.2.4. Degree of control to customers

As soon as network requests (​API calls​) start
coming in, the API gets exposed – and if you let
customers use your APIs in whatever way they like
– a hack attack might be waiting just around the
corner. Many APIs do ​not set any specific
password complexity rules, do not track the API
metrics, or allow repeat session ID tokens​.
Remember that while most of the users are
genuine, there can always be a handful of
miscreants, looking to use your API to illegally
usurp user-data and maybe even introduce bugs in
the system (​the ‘black-hat hackers’​). Set ​limits on
concurrent API connections​, implement password
length/complexity requirements, make
re-authentication mandatory for extended usage,
and be very careful while analyzing the API usage
metrics. If any suspicious activity is detected, find
out the reasons behind it.

3.9.2.5. Maintenance of high coding
standards

API developers need to refrain from taking the short
way out by following the so-called ​‘Just Enough
Coding’ route, which might expose API(s) to
serious vulnerabilities. The risk might not be
apparent at first, since the concerned API might be
doing okay on the usability and the functionality

59

fronts. However, poor coding standards ​will not
allow proper integration of API(s) with the overall
platform/ecosystem​. Problems can arise from
multiple errors – right from ​absence of ‘type
checking’ ​(which allows uploading of any file and
deployment of the app on the server) and ​memory
overflows​, to incorrect ​error handling methods and
even choice of the ‘wrong’ language for coding.
Coders need to take time out to get a hang of how
APIs are meant to work and how customers would
use them. That will help in coding properly.

3.9.2.6. Robust security at endpoints

API developers should ideally include ​‘key signing’,
‘hashes’, ‘shared secrets’ and other such common
endpoint hardening technologies within the API
development cycle. Making changes at a later
stage is difficult – since the legacy systems which
use the API might suffer performance issues. In
case the ​endpoint hardening is not done during the
early phases of API development, it might not get
done at all. As a result, the endpoints will remain
vulnerable – and any competent hacker will have a
field day.

60

3.9.3. API Best Practices: Enterprise
APIs

A​round 85% of the large enterprises across the

globe will have proprietary API programs by the
end of 2018. The constant advancements in
inter-organizational collaboration standards and
information transfer technologies are fueling the
growth of enterprise APIs in a big way. In this
section, we will discuss the best practices of
handling such API systems, to get the best out of
them.

3.9.3.1. Choice of the ‘correct API tier’

Enterprise API management is much more than
creating a standard, ‘​one-size-fits-all​’ API, and then
hoping that it would work like a charm for all

61

companies. The onus is on business entrepreneurs
to ​select the custom API tier and strategy​, that
would enable their firms to ​create more value
internally, and deliver more value to customers and
other stakeholders. ​Startups should ideally go for
the Open API tier​, which can provide them with
large-scale business recognition and exposure.
More established enterprises​, on the other hand,
can have a ​combination of a customer-only API tier
(that has all important transaction data) ​and an
internal API tier (with the proprietary, confidential
internal information). Since Open APIs can be
accessed and used by anyone, they can somewhat
dilute the brand image of larger companies.

3.9.3.2. ‘API-first’ design

In a service-oriented architecture (​SOA​) system,
this is no longer a debate. It is almost ​mandatory
for API providers to adopt an API-first design
approach​. In essence, this means creating a
smooth, functional and powerful interface to start
with, and then hooking it to the backend logic setup
(​the traditional approach puts more importance on
the backend, and relegates APIs to almost an
afterthought​). The API-first approach works well on
two fronts – firstly, ​API testing ​becomes a lot less
complicated, and secondly, the ​API implementation
process remains thoroughly defined and
documented. A backend-first model muddles the
very existence of enterprise APIs.

62

3.9.3.3. Connecting with external

ecosystems

Buyer behaviour is hard to predict. There also
remains considerable uncertainty regarding
demand fluctuations over time too. In order to deal
with these, more and more companies are using
APIs that open up their information systems to
external ecosystems​, comprising of third-party
coders, mobile app developers, testers, analysts,
and the like. As a result, all the necessary
experiments and surveys can be conducted with
the help of the information assets at the disposal of
companies. The degree of third-party information
access can be controlled too. Firms that open up
their ecosystems with APIs typically share their
revenue-streams with third-party developers.

3.9.3.4. Need for enterprise APIs

In a ​Layer 7 survey​, it was revealed that ​72% of the
respondents created APIs to ​bolster the
performance of their in-house mobility systems​.
This was closely followed by the demand for ​better
integrations with business partners via APIs (70%).
Over 65% enterprises expressed their willingness
to ​develop cloud-based APIs​. Interestingly, around
55% of the respondents wished to ​create third-party
app developer communities with APIs​.

63

3.9.3.5. Availability

Enterprise APIs need to be simultaneously
available on-premise as well as ​on the cloud
network. This enhances overall usability, since
users are able to access additional resources (​as
and when required​) without any problems. What’s
more, switching over from the on-premise API
model to the cloud API model also becomes easier.
The key lies in ensuring that the enterprise API
system ​can operate on both the platforms without
requiring any modifications​.

3.9.3.6. Monitoring API Effectiveness

Like any form of software, APIs can also fail. If
persisted with, a buggy API can cause significant
loss of revenue for businesses. That, in turn, brings
to light the value of ​analysing the available API
metrics on a regular basis, to track progress and
assess results/outputs. By tracking the
analytics/metrics of an enterprise API, two things
can be monitored: a) the API itself is working as it is
meant to (​the technical perspective​), and b) the API
is indeed creating innovations and generating value
internally and externally (​the business perspective​).

64

3.10. API Best Practices: Strategy
Optimization

On average, 7 out of every 10 enterprises have
already implemented customized API strategies.
APIs have also emerged as important
income-generating platforms, with nearly 50% of
these enterprises earning money from digital
platforms. Here are some key points in the API
strategy optimization exercise.

3.10.1. Understanding the API Value Chain

For make your API strategy successful, you need to
know the flow in which APIs are used. This is
referred to as the ​‘API value chain’​. It has the
existing ​backend systems​/enterprise IT systems at
the first block. Next up in the chain are the ​API
providers​, who create and deliver the interfaces to
the web/mobile ​app developers​. The latter use the
APIs to create ​client applications​. These, in turn,
are downloaded and used by the ​end-users or the
general public. So, the ‘API value chain’ looks
something like this:

Backend architecture → API Providers →
Application Developers → Client Apps → Final
Users

65

3.10.2. Importance of API Version Control

Having an API strategy without a ​version roadmap
is like trying to control a rudderless ship. There can
be heightened security threats, app makers can
start using them to make applications (​and make
changes in the API themselves​), and outdated APIs
can get dragged along for too long. As the API
entrepreneur, the onus is on you to settle on a
version control system for your application program
interfaces​. Plan how your APIs will be tracked and
monitored (consider all the measurable metrics),
what the security protocol and related updates
would be, and how you will retire/phase out the
older APIs. For that, you will also need to have an
idea about the four stages in an ​API lifecycle:

API Analysis → API Development → API in
Operations → API Retirement

3.10.3. A ‘Minimum-Viable-Product’ (MVP)

A MVP is something like a ​beta release of an API. It
is never advisable to release the final version of an
API and then make changes in it (​that affects the
way in which the APIs are used by those who make
apps as well, diluting the overall scenario​). Instead,
a ​MVP (Minimum Viable Product) version of your
APIs ​should be released as quickly as possible.
Make sure that it is ​accompanied with proper formal
documentation, terms of use, a user-friendly

66

sandbox/public endpoint, and a robust security
setup​. The MVP can be initially offered to in-house
developers, before it is rolled out to business
collaborators, who can become customers of the
APIs. The feedback received has to be monitored,
the required changes implemented, and then the
full-blown version 1.0 of an API is released.

3.10.4. Design Style Selection

Designing an API that would deliver value to your
enterprise is not the easiest task in the world, and
going with a wrong design model can further
complicate matters. Based on your business goals
and pre-specified API visions (​i.e., how APIs are
going to boost your business operations​), you can
choose a ​Pragmatic REST model​, a ​True Rest
(Hypermedia) design model​, or a ​Web Service
Tunneling model​. With the importance of Internet of
Things (IoT) rising, many enterprises also opt for
the ​Event-driven API designing ​style. Make sure
that the API design strategy you pick will make the
interfaces in sync with your backend systems.

3.10.5. API Gateway

An API strategy might be good in theory, and it
might even have a captive developer audience (​a
ready set of customers​). However, all the good
work might be undone, if API developers are not
careful while creating the ​‘API Gateway’​. The

67

gateway is supposed to ​deliver all the
functionalities included in the core API
infrastructure – right from orchestration and
caching, to data security and access control. For an
API program to be usable, its gateway needs to be
very carefully developed.

3.10.6. User roles in API Program

It’s all very fine to have an API strategy on paper.
However, it’s an entirely different ball game to
actually implement it within your enterprise. Not
engaging the right personnel in the right roles in
API management is one of the biggest reasons for
the failure of many enterprise APIs. The ​enterprise
architect(s) should be working as the lead
managers in an API strategy, overseeing the
development, designing, modifications and
deployment of APIs (​along with their backend
integration​). ​Product managers should double up
as the connection/communication channel ​between
the ecosystem of API developers and API
customers. The responsibilities of ​maintaining the
API architecture should be taken by the system
administrator(s)​. Other important team players
involved in the API program include ​API testers,
senior software engineers, internal/external app
developers, and other stakeholders​.

68

4. APIs In Various

Industries

In this chapter, you will learn:

● The implementation of APIs in different
fields (including examples)

T​he rapid growth of the ‘API economy’ has left its

mark on different industrial sectors and business
activities around the world. APIs are no longer
something that are dealt with only by the most
tech-savvy companies. Instead, they are
increasingly becoming mainstream, with
enterprises from various sectors moving on to
digitized platforms for implementing innovation and
cutting down on overall operational expenses. In
this section of the ebook, we will briefly take a look
at the industrial sectors in which APIs find
widespread acceptance.

69

4.1. Banking Industry

A​PIs are extensively used in mobile banking

apps, offering real-time account information and the
convenience of doing secure transactions. Digital
support have also boosted e-payments (via credit
card or debit card), as well as the online
promotional campaigns undertaken by banks. APIs
have a strong role to play in Partner Loyalty
Programs too.

Examples:​ Tripit Point Checker, PayPal

 ​4.2.​ ​Media & Entertainment
Industry

K​ey stakeholders (e.g., film producers) utilize

APIs to facilitate ticket-buying for the general users.
In addition, access-information on the basis of tiers
is also provided digitally. Audio recordings are
tracked with APIs as well, and the latter is also
used for product placement advertisements within
programs.

Examples:​ Comingsoon.net, Moviefone

70

4.3.​ ​Travel Industry

T​he scopes for developing custom APIs for the

travel and navigation industry are immense. Right
from direction and route assistant apps, to software
for inventory management and order processing in
airlines - APIs are extensively being used by
web/mobile developers worldwide. Travel
aggregator apps also typically rely on backend
cloud support for full functionality. Specialized
smart car APIs are also growing in popularity.

Examples:​ Tripit, Google Maps

 ​4.4.​ ​Retail Industry

L​ocating stores nearby (in any particular location),

keeping track of the status of inventories, and
sharing the details on the latest offers, discounts &
special deals are some of the important functions
facilitated by APIs and mobile apps. Product
catalogs can be created/digitally updated real-time
with the help of APIs too.

Examples:​ Amazon, C-Net

71

 ​4.5.​ ​Medical/Healthcare Industry

A​PIs are increasingly being used in pharmacies

for order entry and processing. A digital platform
also makes two-way communication (via calling or
messaging; between practitioner and patients)
more seamless and more secure. Medical
stores/clinics can access their appointment books
with the help of apps powered by BaaS.

Examples: WellDoc Diabetes Manager, Merck
Medicus

 ​ 4.6. Energy & Utilities Industry

W​ith connected homes and internet of things

(IoT) progressing rapidly, APIs are becoming
integral elements in the development of apps for
this sector. Digital platforms are revolutionizing the
way in which daily energy consumption figures are
tracked and managed. Field repair departments
find it handy to use optimized software to maintain
inventories. APIs are also being used to track and
manage service requests (new and existing).

Examples: Southern California Edison, MobileIron
SmartHome

72

4.7. Telecom Industry

T​he pattern and purposes of API usage in the

telecom industry has a lot in common to how such
digital interfaces are used in the banking industry.
Once again, APIs facilitate secure fund
withdrawals/transfers (through credit/debit cards),
and make it easy for people to access account
information on the go. Many telecom players launch
advertising campaigns through mobile applications
too.

Examples:​ PayPal, GroupOn

 ​4.8.​ ​Automobile Industry

T​he connected car segment is one of the fastest

growing sectors in the grand IoT scheme
worldwide. APIs play multifarious important roles
over here. Apart from traffic alerts, navigation
assistance and other location-based services, APIs
are being used to access different instances of
service records from the cloud (as and when
required). Mobile apps backed by custom APIs also
send/receive alerts to/from vehicle dealers.

Examples:​ BMW Connected Drive, Google Maps

73

 ​4.9.​ ​Insurance Industry

With the help of API-based digital solutions,
insurance companies are being able to deliver
higher customer-satisfaction levels than ever
before. People can now easily upload claim-related
images, know more about company policies, and
get premium deposits in bank accounts approved -
all via the mobile/digital medium. Information
exchange regarding repair claims and coverage is
also facilitated.

74

5. API Stories

In this chapter, you will learn:

● Six API use cases from the real world (Case
Studies)

5.1. Expedia - Smarter Marketing

Expedia is a leading US-based online travel and
reservation company, with a vast partner/affiliate
network. It constantly strives to deliver greater
value to all customers, through continuous
innovation, technological advancements and
provision of high-quality business/leisure travel
options. Prior to 2010 (when Expedia implemented
Amazon Web Services), the company used to do
business with an website including HTML frames.
The partners had to embed elements in the site.
The process was long-drawn, and at times,
cumbersome.

Enter APIs, and the day-to-day operational
processes at Expedia changed for the better in a

75

big way. Currently, more than 90% of the
company’s annual revenue is derived from these
digital platforms alone. The cloud virtualization
strategy helped Expedia tie up with more partners
(for instance, travel aggregator portals and hotels).
These partner websites had linkbacks to Expedia -
driving up the business for the latter. The marginal
cost figures for Expedia (for the incremental
business) also remains low.

The key advantages Expedia has obtained by using
APIs can be summarized as under:

❖ Greater reach to global clients, with
accurate and updated information.

❖ Superior platform scalability.
❖ Smarter information processing.
❖ Making app development cycles shorter.
❖ Quicker bug-fixing and troubleshooting.

76

5.2.​ ​Facebook - Better Partnerships,
Lower Costs

Facebook Connect, the social media website’s
authentication APIs, has helped FB establish and
maintain a robust, cost-effective and steadily
increasing presence. From the users point of view,
the Facebook Connect platform offers the
now-familiar ‘Log in with Facebook’ option (on other
applications/websites). This feature goes a long
way in establishing a universal set of credentials for
most web resources.

Strong integrations with mobile platforms and
third-party apps is a high point of the Facebook
Connect API platform. Users can use their
Instagram accounts to publish images on FB, as
well as chat with their contacts. The platform is also
embedded with the iOS platform (since iOS 6), and
offers several handy features - collaboration with
native Apple apps, contact information
synchronization etc - as well.

The key advantages Facebook has obtained by
using APIs can be summarized as under:

❖ Establishing universal IDs for users.
❖ Integration with third-party web/mobile

applications and websites.

77

❖ Significant cost reduction. In the absence of
APIs, Facebook would have required well
over 1500 marketing personnel, and a
budget in excess of $60 million (in three
years).

❖ Easier onboarding for third-party app
developers.

❖ Seamless partnerships.

5.3.​ ​Nike - The Nike+ Story

One of the biggest sports apparel and footwear
producers in the world - Nike - owes a lot of its
recent success to its multi-featured digital platform,
Nike+. The latter is a activity and fitness tracker,
originally unveiled in 2006 - and currently available
for both iOS and Android platforms (including
wearables). Putting things in perspective, the Nike+
platform has been instrumental in significantly
enhancing the brand’s visibility and recall value in
the customer-mindspace.

Another ongoing benefit that this API-powered
platform offers is a smarter strategy to establish
business partnerships. Integration with corporate
applications has also been rendered a lot simpler.
The data collected in the Nike+ platform can be
uploaded directly to the company site, through
iTunes or other external programs. The

78

Nike+Running application is also available in
stores.

The key advantages Nike has obtained by using
APIs can be summarized as under:

❖ Ensuring greater reach and exposure of the
Nike brand.

❖ Smooth tracking and transfer of activity
data.

❖ Better collaboration, partnership and
networking opportunities.

❖ Easy implementation with external apps
(leisure/corporate).

 ​5.4.​ ​Salesforce - CRM Services,

Revolutionized

American cloud computing firm Salesforce is one of
the pioneers, when it comes to establishing an API
strategy for business. Through custom-built APIs,
the company manages to provide a large bouquet
of important CRM services to users from all over.
These services include social media tracking,
automation of sales force tasks, performance
management and helpdesk support activities,
among others.

Via migration to digital platforms, Salesforce has
found it progressively easier to collaborate with

79

other firms/partners. Implementation of the
Salesforce software can be directly attributed to the
smooth implementation in Google, Microsoft,
Oracle and SAP applications.

The key advantages Salesforce has obtained by
using APIs can be summarized as under:

❖ Like Facebook Connect, the Salesforce
APIs have helped in serious cost-reduction.

❖ Smooth implementation with third-party
solutions.

❖ Wide array of automated, high-quality CRM
services.

❖ Constant innovation and service quality
improvement.

 ​5.5. Netflix - Efficient Database
Management

Netflix, the popular movies and television show
streaming service, presents yet another successful
use case of API strategy implementation. The
service migrated to API platform back in 2008, and
since then, have reaped considerable benefits from
the data virtualization and cloud support. By 2012,
the Netflix API was being used by well over 20000

80

third-party app developers - while media content
was supported by more than 800 devices.

The arrival of Netflix API helps developers in three
important ways: first, for accessing the rental
history of the video database; next, for managing
the constantly expanding database resource; and
finally, for handling queue-management related
tasks. With the help of the API platform, the
developers can easily build custom applications for
devices - without Netflix having to incur additional
expenses. If there was no API, there would have
been no third-party app makers - and the company
would have had to cough up more than $1 billion
annually, to develop everything in-house.

The key advantages Netflix has obtained by using
APIs can be summarized as under:

❖ Avoiding high development costs by
allowing access to third-party developers.

❖ Smarter management of the Netflix
database.

❖ Increased reach, through compatibility with
more devices (with apps).

❖ Commercial use of the free Netflix API.

81

 ​5.6.​ ​Coca Cola - More Fizz To
Business

In 2011, Coca Cola launched its much-talked-about
Information Transparency Policy, and that marked
the start of the soft drink conglomerate using the
API platform for business. The company placed
prime importance on establishing the essential
security protocols first. That, in turn, ensured, that
APIs could be churned out without any hitch later.

Following a streamlined API strategy has been
instrumental in helping Coca Cola get more out of
its core strategic capabilities, through constant
innovation, quality improvement, higher productivity
levels, and improved time-to-market. Over the
years, multiple departments have started to rely on
APIs for operations - right from procurement and
supply-chain management, to sales, finance and IT.

The key advantages Coca Cola has obtained by
using APIs can be summarized as under:

❖ Speeding up the overall development by
bringing down workloads.

❖ Helping cloud and mobile project
management teams.

❖ Significant internal benefits (i.e., for
in-house developers).

82

❖ Opening up the business and making
information readily accessible.

❖ Optimal utilization of digital capabilities.

83

84

